organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6,7-Dihydro-4-(4-methoxyphenyl)-3methyl-6-oxo-1-phenyl-1*H*-pyrazolo[3,4*b*]pyridine-5-carbonitrile

Xin-Ying Zhang,* Xiao-Yan Li, Xia Wang, Dong-Fang Li and Xue-Sen Fan

School of Chemical and Environmental Sciences, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China Correspondence e-mail: xyzh518@sohu.com

Received 22 August 2008; accepted 30 August 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.115; data-to-parameter ratio = 12.7.

In the title compound, $C_{21}H_{16}N_4O_2$, the dihedral angle between the methoxy-substituted benzene ring and the ring system formed by the pyridinone ring and the pyrazole ring is 57.4 (1)°, and that between the unsubstituted phenyl ring and the ring system is 135.6 (1)°. In the crystal structure, molecules are linked together *via* intermolecular $N-H\cdots O$ hydrogen bonds.

Related literature

For the biological and pharmacological activities of pyrazolo[3,4-*b*]pyridine derivatives, see Falcó *et al.* (2005); Ludwig *et al.* (2004). For a related structure, see Quiroga *et al.* (1999).

Experimental

Crystal data C₂₁H₁₆N₄O₂

 $M_r = 356.38$

Triclinic, P1	V = 865.2 (2) Å ³
a = 7.0621 (11) Å	Z = 2
b = 11.0272 (17) Å	Mo $K\alpha$ radiation
c = 12.1743 (19) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 68.467 \ (2)^{\circ}$	T = 295 (2) K
$\beta = 78.949 \ (2)^{\circ}$	$0.43 \times 0.30 \times 0.11 \text{ mm}$
$\gamma = 87.471 \ (2)^{\circ}$	
Data collection	
Bruker SMART CCD area-detector	3136 independent reflections

diffractometer	2236 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.019$
6198 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	246 parameters
$wR(F^2) = 0.114$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$
3136 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^i$	0.86	2.06	2.8523 (18)	153
Symmetry code: (i) -	r - v + 1 - z	+ 2		

Symmetry code: (i) -x, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

This work was supported by the National Natural Science Foundation of China (No. 20772025) and the Program for Science and Technology Innovation Talents in Universities of Henan Province (No. 2008HASTIT006).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2451).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Falcó, J. L., Lloveras, M., Buira, I., Teixidó, J., Borrell, J. I., Méndez, E., Terencio, J., Palomer, A. & Guglietta, A. (2005). *Eur. J. Med. Chem.* 40, 1179–1187.
- Ludwig, S., Planz, O., Sedlacek, H. H. & Pleschka, S. (2004). PCT Int. Appl. WO 2 004 085 682.
- Quiroga, J., Alvarado, M., Insuasty, B., Moreno, R., Ravina, E., Estevez, I. & de Almedia, R. H. (1999). J. Heterocycl. Chem. 36, 1311–1316.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, o1888 [doi:10.1107/S1600536808027852]

6,7-Dihydro-4-(4-methoxyphenyl)-3-methyl-6-oxo-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carbonitrile

X.-Y. Zhang, X.-Y. Li, X. Wang, D.-F. Li and X.-S. Fan

Comment

Pyrazolo[3,4-*b*]pyridine derivatives have been found of interests for their biological and pharmacological activities, such as antiviral (Ludwig *et al.*, 2004). Moreover, pyrazolo[3,4-*b*]pyridin-6-ones as a subunit of pyrazolo[3,4-*b*]pyridine acted as potential hypnotic drugs in many cases (Falcó *et al.*, 2005). Due to their importance, many methods have been reported for the construction of pyrazolo[3,4-*b*]pyridine derivatives including pyrazolo[3,4-*b*]pyridin-6-ones (Quiroga *et al.*, 1999; Falcó *et al.*, 2005). Herein, we report the crystal structure of the title compound, one of pyrazolo[3,4-*b*]pyridin-6-one derivatives.

In the title compound there are four rings including two phenyl rings, one pyridinone ring and one pyrazole ring. The pyridinone ring and the pyrazole ring is almost co-planar and formed a ring system. The dihedral angle between this ring system and the methoxy-substituted phenyl ring is $57.4 (1)^\circ$, which is probably due to the repulsion of the cyano group on the pyridinone ring and the hydrogen atoms on the *ortho*-positions of the phenyl ring connected with the pyridinone ring, and the repulsion between these hydrogen atoms and the methyl group on the pyrazole ring. The dihedral angle between the non-substituted phenyl ring system is $135.6 (1)^\circ$.

In the crystal structure the molecules are connected via intermolecular N-H···O hydrogen bonding (Table 1).

Experimental

To 1 ml of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF₄]) were added 4-methoxybenzaldehyde (1 mmol, **II**) and ethyl cyanoacetate (1 mmol). The mixture was stirred at 80 °C until the disappearance of **II**. Then, 5-amino-3-methyl-1-phenylpyrazole (1 mmol) and FeCl₃.6H₂O (0.2 mmol) was added and the mixture was continued to be stirred at the same temperature to complete the reaction (monitored by TLC). The reaction time was 10 h totally. Upon completion, the mixture was cooled to room temperature and 2 ml of 50% ethanol in water was added. The product was collected by suction and rinsed with water and cool ethanol in a yield of 90% as white solid. Single crystals of the title compound were obtained by slow evaporation of the solvent from an ethyl acetate-ethanol (1:1 ν/ν) solution.

Refinement

H-atoms were included in calculated positions and treated as riding atoms with N—H = 0.86 Å and C—H = 0.93–0.96 Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $1.2U_{eq}(N,C)$ for others.

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. Crystal Structure of the title compound with view along the *a* axis. Intermolecular N—H···O hydrogen bonding is shown as dashed lines.

6,7-Dihydro-4-(4-methoxyphenyl)-3-methyl-6-oxo-1-phenyl-1H- pyrazolo[3,4-b]pyridine-5-carbonitrile

Crystal data	
$C_{21}H_{16}N_4O_2$	<i>Z</i> = 2
$M_r = 356.38$	$F_{000} = 372$
Triclinic, PT	$D_{\rm x} = 1.368 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.0621 (11) Å	Cell parameters from 1698 reflections
b = 11.0272 (17) Å	$\theta = 3.2 - 26.3^{\circ}$
c = 12.1743 (19) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 68.467 \ (2)^{\circ}$	T = 295 (2) K
$\beta = 78.949 \ (2)^{\circ}$	Block, colourless
$\gamma = 87.471 \ (2)^{\circ}$	$0.43 \times 0.30 \times 0.11 \text{ mm}$
$V = 865.2 (2) \text{ Å}^3$	

Data collection

2236 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.019$
$\theta_{\text{max}} = 25.5^{\circ}$
$\theta_{\min} = 2.9^{\circ}$
$h = -8 \rightarrow 8$
$k = -13 \rightarrow 13$
$l = -14 \rightarrow 14$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.114$	$w = 1/[\sigma^2(F_o^2) + (0.0514P)^2 + 0.1601P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{max} < 0.001$
3136 reflections	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
246 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2756 (2)	0.56351 (17)	0.91520 (16)	0.0390 (4)
C2	0.4579 (2)	0.63083 (17)	0.84855 (16)	0.0396 (4)
C3	0.5717 (2)	0.60459 (16)	0.75386 (16)	0.0380 (4)
C4	0.5056 (2)	0.50171 (17)	0.72613 (16)	0.0390 (4)
C5	0.3325 (2)	0.43515 (16)	0.79290 (15)	0.0382 (4)
C6	0.5776 (3)	0.43251 (18)	0.64820 (17)	0.0450 (5)
C7	0.5055 (3)	0.7343 (2)	0.88358 (19)	0.0534 (5)
C8	0.7609 (3)	0.4528 (2)	0.55762 (19)	0.0583 (6)
H8A	0.7738	0.3832	0.5273	0.087*
H8B	0.8686	0.4537	0.5950	0.087*
H8C	0.7580	0.5345	0.4924	0.087*
С9	0.1563 (3)	0.23971 (18)	0.79607 (16)	0.0457 (5)
C10	-0.0341 (3)	0.2728 (2)	0.81733 (18)	0.0549 (5)
H10	-0.0665	0.3585	0.8065	0.066*
C11	-0.1762 (3)	0.1761 (3)	0.8550 (2)	0.0736 (7)
H11	-0.3052	0.1966	0.8713	0.088*
C12	-0.1284 (5)	0.0504 (3)	0.8685 (2)	0.0857 (9)
H12	-0.2250	-0.0137	0.8923	0.103*
C13	0.0630 (5)	0.0186 (2)	0.8470 (2)	0.0813 (8)
H13	0.0947	-0.0670	0.8567	0.098*
C14	0.2069 (3)	0.1128 (2)	0.81120 (19)	0.0623 (6)
H14	0.3360	0.0915	0.7975	0.075*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	0.7532 (2)	0.68056 (16)	0.68722 (16)	0.0386 (4)
C16	0.8942 (3)	0.69110 (18)	0.74930 (17)	0.0455 (5)
H16	0.8741	0.6498	0.8325	0.055*
C17	1.0627 (3)	0.76181 (18)	0.68909 (17)	0.0490 (5)
H17	1.1553	0.7678	0.7320	0.059*
C18	1.0963 (2)	0.82417 (17)	0.56554 (17)	0.0437 (5)
C19	0.9568 (3)	0.81699 (17)	0.50216 (17)	0.0452 (5)
H19	0.9768	0.8600	0.4192	0.054*
C20	0.7868 (3)	0.74526 (17)	0.56307 (16)	0.0429 (4)
H20	0.6936	0.7404	0.5201	0.051*
C21	1.3193 (3)	0.9516 (2)	0.39001 (19)	0.0655 (6)
H21A	1.3223	0.8877	0.3534	0.098*
H21B	1.4440	0.9940	0.3686	0.098*
H21C	1.2248	1.0151	0.3623	0.098*
N1	0.22050 (19)	0.46471 (13)	0.88333 (13)	0.0391 (4)
H1	0.1144	0.4213	0.9209	0.047*
N2	0.3060 (2)	0.33757 (15)	0.75584 (14)	0.0446 (4)
N3	0.4599 (2)	0.33551 (16)	0.66572 (14)	0.0510 (4)
N4	0.5383 (3)	0.8162 (2)	0.9136 (2)	0.0929 (8)
O1	0.17078 (18)	0.59323 (13)	0.99468 (12)	0.0513 (4)
O2	1.27013 (19)	0.88929 (14)	0.51707 (13)	0.0605 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
C1	0.0338 (9)	0.0395 (10)	0.0403 (10)	-0.0069 (8)	0.0009 (8)	-0.0136 (8)
C2	0.0333 (9)	0.0393 (10)	0.0432 (10)	-0.0072 (8)	-0.0002 (8)	-0.0141 (8)
C3	0.0308 (9)	0.0356 (9)	0.0413 (10)	-0.0025 (7)	-0.0011 (8)	-0.0091 (8)
C4	0.0307 (9)	0.0399 (10)	0.0413 (10)	-0.0024 (7)	0.0026 (7)	-0.0131 (8)
C5	0.0343 (9)	0.0380 (10)	0.0401 (10)	-0.0019 (7)	0.0001 (8)	-0.0148 (8)
C6	0.0369 (10)	0.0442 (11)	0.0488 (11)	-0.0016 (8)	0.0053 (8)	-0.0173 (9)
C7	0.0392 (11)	0.0556 (13)	0.0624 (13)	-0.0165 (9)	0.0130 (9)	-0.0272 (11)
C8	0.0484 (12)	0.0595 (13)	0.0603 (13)	-0.0036 (10)	0.0143 (10)	-0.0260 (11)
С9	0.0490 (11)	0.0476 (11)	0.0413 (11)	-0.0137 (9)	0.0009 (9)	-0.0200 (9)
C10	0.0488 (12)	0.0673 (14)	0.0520 (12)	-0.0157 (10)	-0.0024 (9)	-0.0273 (11)
C11	0.0568 (14)	0.108 (2)	0.0591 (14)	-0.0353 (14)	0.0017 (11)	-0.0365 (15)
C12	0.105 (2)	0.095 (2)	0.0552 (15)	-0.0659 (18)	0.0019 (14)	-0.0253 (14)
C13	0.117 (2)	0.0580 (15)	0.0675 (16)	-0.0362 (15)	-0.0015 (15)	-0.0248 (13)
C14	0.0752 (15)	0.0500 (13)	0.0617 (14)	-0.0137 (11)	0.0039 (11)	-0.0269 (11)
C15	0.0301 (9)	0.0368 (10)	0.0430 (10)	-0.0029 (7)	0.0023 (8)	-0.0117 (8)
C16	0.0358 (10)	0.0496 (11)	0.0407 (10)	-0.0060 (8)	-0.0007 (8)	-0.0070 (9)
C17	0.0346 (10)	0.0534 (12)	0.0508 (12)	-0.0058 (9)	-0.0056 (9)	-0.0101 (10)
C18	0.0339 (10)	0.0387 (10)	0.0512 (12)	-0.0066 (8)	0.0069 (8)	-0.0144 (9)
C19	0.0470 (11)	0.0420 (10)	0.0377 (10)	-0.0051 (8)	0.0063 (8)	-0.0105 (8)
C20	0.0390 (10)	0.0443 (10)	0.0434 (11)	-0.0039 (8)	-0.0023 (8)	-0.0158 (9)
C21	0.0598 (14)	0.0550 (13)	0.0643 (15)	-0.0165 (10)	0.0248 (11)	-0.0179 (11)
N1	0.0316 (8)	0.0390 (8)	0.0424 (8)	-0.0108 (6)	0.0065 (6)	-0.0151 (7)
N2	0.0395 (8)	0.0440 (9)	0.0488 (9)	-0.0099 (7)	0.0068 (7)	-0.0215 (7)

N3	0.0469 (9)	0.0504 (10)	0.0520 (10)	-0.0053 (8)	0.0107 (8)	-0.0238 (8)
N4	0.0738 (14)	0.0961 (17)	0.1204 (19)	-0.0448 (12)	0.0337 (13)	-0.0735 (16)
01	0.0405 (7)	0.0616 (9)	0.0534 (8)	-0.0166 (6)	0.0137 (6)	-0.0320 (7)
02	0.0430 (8)	0.0640 (9)	0.0589 (9)	-0.0189 (7)	0.0111 (7)	-0.0125 (7)
Geometric parar	neters (Å, °)					
C1-01		1.236 (2)	C11—	-H11	0.9	300
C1—N1		1.377 (2)	C12—	-C13	1.3	81 (4)
C1—C2		1.452 (2)	C12—	-H12	0.9	300
C2—C3		1.388 (2)	C13—	-C14	1.3	76 (3)
С2—С7		1.429 (3)	C13—	-H13	0.9	300
C3—C4		1.417 (2)	C14—	-H14	0.9	300
C3—C15		1.484 (2)	C15—	-C20	1.3	91 (2)
C4—C5		1.398 (2)	C15—	-C16	1.3	92 (2)
C4—C6		1.433 (2)	C16—	-C17	1.3	75 (2)
C5—N2		1.343 (2)	C16—	-H16	0.9	300
C5—N1		1.361 (2)	C17—	-C18	1.3	82 (3)
C6—N3		1.313 (2)	C17—	-H17	0.9	300
C6—C8		1.496 (2)	C18—	-O2	1.3	64 (2)
C7—N4		1.139 (2)	C18—	-C19	1.3	84 (3)
C8—H8A		0.9600	C19—	-C20	1.3	89 (2)
C8—H8B		0.9600	C19—	-H19	0.9	300
C8—H8C		0.9600	C20—	-H20	0.9	300
C9—C10		1.379 (3)	C21—	-02	1.4	21 (2)
C9—C14		1.383 (3)	C21—	-H21A	0.9	600
C9—N2		1.427 (2)	C21—	-H21B	0.9	600
C10-C11		1.383 (3)	C21—	-H21C	0.9	600
C10—H10		0.9300	N1—I	41	0.8	600
C11—C12		1.369 (4)	N2—1	N3	1.3	94 (2)
O1-C1-N1		120.55 (15)	C14—	-C13—H13	119	0.8
O1—C1—C2		123.12 (16)	C12—	-C13—H13	119	0.8
N1—C1—C2		116.32 (15)	C13—	-C14—C9	118	3.8 (2)
C3—C2—C7		122.01 (15)	C13—	-C14—H14	120).6
C3—C2—C1		124.02 (16)	С9—С	С14—Н14	120).6
C7—C2—C1		113.84 (15)	C20—	-C15—C16	118	3.08 (16)
C2—C3—C4		116.42 (15)	C20—	-C15—C3	121	.91 (16)
C2—C3—C15		120.98 (16)	C16—	-C15—C3	119	9.99 (16)
C4—C3—C15		122.60 (15)	C17—	-C16—C15	120).78 (17)
C5—C4—C3		119.12 (16)	C17—	-C16—H16	119	1.6
C5—C4—C6		103.83 (15)	C15—	-C16—H16	119	0.6
C3—C4—C6		136.83 (16)	C16—	-C17—C18	120).81 (18)
N2—C5—N1		127.97 (15)	C16—	-C17—H17	119	1.6
N2-C5-C4		108.43 (15)	C18—	-C17—H17	119	0.6
N1-C5-C4		123.53 (16)	O2—0	C18—C17	114	.81 (17)
N3—C6—C4		111.18 (15)	O2—0	C18—C19	125	5.76 (17)
N3—C6—C8		118.63 (17)	C17—	-C18—C19	119	9.43 (16)
C4—C6—C8		130.17 (17)	C18—	-C19—C20	119	0.69 (17)
N4—C7—C2		178.0 (2)	C18—	-С19—Н19	120).2

С6—С8—Н8А	109.5	С20—С19—Н19	120.2
C6—C8—H8B	109.5	C19—C20—C15	121.20 (18)
H8A—C8—H8B	109.5	С19—С20—Н20	119.4
С6—С8—Н8С	109.5	С15—С20—Н20	119.4
H8A—C8—H8C	109.5	O2—C21—H21A	109.5
H8B—C8—H8C	109.5	O2—C21—H21B	109.5
C10-C9-C14	121.36 (18)	H21A—C21—H21B	109.5
C10-C9-N2	120.09 (18)	O2—C21—H21C	109.5
C14—C9—N2	118.54 (18)	H21A—C21—H21C	109.5
C9—C10—C11	118.8 (2)	H21B—C21—H21C	109.5
С9—С10—Н10	120.6	C5—N1—C1	120.54 (14)
C11—C10—H10	120.6	C5—N1—H1	119.7
C12—C11—C10	120.4 (2)	C1—N1—H1	119.7
C12—C11—H11	119.8	C5—N2—N3	110.21 (14)
C10-C11-H11	119.8	C5—N2—C9	130.98 (15)
C11—C12—C13	120.2 (2)	N3—N2—C9	118.76 (14)
C11—C12—H12	119.9	C6—N3—N2	106.35 (15)
С13—С12—Н12	119.9	C18—O2—C21	118.36 (16)
C14—C13—C12	120.4 (3)		
O1—C1—C2—C3	-175.69 (18)	C4—C3—C15—C20	56.1 (2)
N1—C1—C2—C3	2.7 (3)	C2—C3—C15—C16	54.0 (2)
O1—C1—C2—C7	0.3 (3)	C4—C3—C15—C16	-125.4 (2)
N1—C1—C2—C7	178.62 (16)	C20-C15-C16-C17	-1.0 (3)
C7—C2—C3—C4	-178.28 (17)	C3-C15-C16-C17	-179.57 (17)
C1—C2—C3—C4	-2.6 (3)	C15-C16-C17-C18	0.0 (3)
C7—C2—C3—C15	2.3 (3)	C16—C17—C18—O2	-179.12 (17)
C1—C2—C3—C15	177.93 (17)	C16—C17—C18—C19	1.1 (3)
C2—C3—C4—C5	0.8 (2)	O2-C18-C19-C20	179.00 (17)
C15—C3—C4—C5	-179.76 (16)	C17—C18—C19—C20	-1.3 (3)
C2—C3—C4—C6	-172.7 (2)	C18—C19—C20—C15	0.3 (3)
C15—C3—C4—C6	6.7 (3)	C16—C15—C20—C19	0.8 (3)
C3—C4—C5—N2	-176.16 (16)	C3-C15-C20-C19	179.38 (16)
C6—C4—C5—N2	-0.7 (2)	N2—C5—N1—C1	175.58 (17)
C3—C4—C5—N1	0.9 (3)	C4—C5—N1—C1	-0.9 (3)
C6-C4-C5-N1	176.38 (16)	O1-C1-N1-C5	177.60 (16)
C5-C4-C6-N3	0.4 (2)	C2-C1-N1-C5	-0.8 (2)
C3—C4—C6—N3	174.6 (2)	N1—C5—N2—N3	-176.14 (17)
C5—C4—C6—C8	-177.7 (2)	C4—C5—N2—N3	0.8 (2)
C3—C4—C6—C8	-3.5 (4)	N1	1.4 (3)
C3—C2—C7—N4	171 (8)	C4—C5—N2—C9	178.32 (18)
C1—C2—C7—N4	-5(8)	C10-C9-N2-C5	44.7 (3)
C14—C9—C10—C11	0.3 (3)	C14—C9—N2—C5	-136.3 (2)
N2-C9-C10-C11	179.32 (18)	C10-C9-N2-N3	-137.97 (19)
C9—C10—C11—C12	-1.3 (3)	C14—C9—N2—N3	41.1 (3)
C10-C11-C12-C13	1.4 (4)	C4—C6—N3—N2	0.0 (2)
C11—C12—C13—C14	-0.3 (4)	C8—C6—N3—N2	178.40 (17)
C12—C13—C14—C9	-0.7 (4)	C5—N2—N3—C6	-0.5 (2)
C10-C9-C14-C13	0.7 (3)	C9—N2—N3—C6	-178.39 (17)
N2-C9-C14-C13	-178.32 (19)	C17—C18—O2—C21	177.44 (17)

C2—C3—C15—C20	-124.5 (2)	C19—C18—O2—C21	-2.8 (3)	
Hydrogen-bond geometry (Å, °)				
<i>D</i> —Н… <i>A</i>	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
N1—H1···O1 ⁱ	0.86	2.06	2.8523 (18)	153
Symmetry codes: (i) $-x$, $-y+1$, $-z+2$.				

Fig. 1

Fig. 2